Calculating the Need for Energy Storage

Calculating symbols

Current Calculations

Currently each country and grid calculates its need for storage in a very complicated manner. They model various scenarios, projecting different generation mixes, based on huge assumptions about future rollout. For example, the UK National Grid’s annual Future Energy Scenarios estimate of storage needed by 2050 increases every year.

In round numbers it is currently at 20-40GW storage (across all scenarios, including the do-nothing “steady progression” scenario) for a projected 80GW grid, with that requirement still rising. This begs two questions:

  • Is there a simpler way to calculate storage requirements;
  • If forecasts are increasing continually, what is the end point to which they are trending?

Urgency of the Need

This is vitally important because if countries underestimate the requirement, insufficient political, financial and operational investment will be made. Large volumes of storage will require a massive roll-out of new plants, however large these plants are. Lead times for financing, building and commissioning large-scale long-duration storage are long, so work must begin soon for the roll-out to achieve 2050 targets.

Two factors need calculating: power (GW) and energy (GWh). It is easiest and clearest to calculate them separately and for the longest low-generation period forecastable – i.e. the kalte Dunkelflaute.

This is a regular weather pattern (every 2 or 3 years) in which a high pressure system stations itself over most of Western Europe for up to two weeks mid-winter. These winters, normally a period of peak demand and minimal solar generation, maximum renewable generation reduces by 90% or more.

Calculating Storage Power

Stored power = {peak demand} + {10-15% supply margin} – {total zero-carbon dispatchable generation capacity}.

The supply margin exists to accommodate failures in any part of the network or the plants attached to it, and/or unusual spikes in demand.

Calculating Storage Energy

Stored energy = {total demand} – {total zero-carbon dispatchable generation}.

This should potentially be up-rated for (a) deterioration of stored energy such as battery self-discharge or cooling of stored heat, and (b) any possibility of a follow-on extreme weather period before the stores are sufficiently re-charged.

Calculating Plant Sizes

Actual plant sizes will vary. Some plants need sufficient duration to operate as baseload during the challenging weather pattern. Others will provide for variable demand, at various utilisation rates. This is not a rigid distinction: shorter-duration plants, for example, can coordinate in a relay through the period, and plants can operate sometimes for an hour or less, and at other times for many hours.

The best way to calculate actual plant-size requirements is to model both supply and demand during the most extreme weather event. This should be upgraded on consideration of:

  • Any degradation of stored energy, e.g. thermal cooling, or battery self-discharge;
  • Any probability of a follow-on extreme weather period occurring before storage is sufficiently re-charged.

The final stage is to input the actual projects that are proposed, and re-run the scenario / calculation to determine the sizes of plants that remain to be developed.

What if the Target is Not Net Zero?

There are two answers to this: technical and strategic.

Technically, add all the permitted emitting generation to the total dispatchable generation factor in the two equations.

Strategically, the electricity grid is much easier and cheaper to decarbonise than many other sectors such as aviation, shipping, heating, industry. Therefore to minimise the cost and disruption of the energy transition we should target Net Zero grids in order to permit some excess emissions from other sectors, to enable the entire economy to meet 2050 targets.

SUBSCRIBE FOR UPDATES

READ MORE

COP29 in Baku, Azerbaijan
Blog

COP29 Key Outcomes

The 29th UN Climate Change Conference (COP29), held in Baku, Azerbaijan, concluded on 23rd November, 33 hours behind schedule. COP29 delivered noteworthy outcomes in some

Read More »

GET IN TOUCH